In nearly every country on earth, leaders are pushing electric vehicles on their citizens. The spartan lifestyle being pushed by Joe Biden and politicians hoping to fight supposed climate change demands an end to the internal combustion engine, and a near complete transition to electric vehicles. Whoever discovers battery technology that allows electric vehicles to compete with gas powered drivetrains will surely benefit.
Electric Limitations
Current battery technology is limited. As James Temple writes for MIT Technology Review:
For many buyers, they’re simply too expensive, their range is too limited, and charging them isn’t nearly as quick and convenient as refueling at the pump.
All these limitations have to do with the lithium-ion batteries that power the vehicles. They’re costly, heavy, and quick to run out of juice. To make matters worse, the batteries rely on liquid electrolytes that can burst into flames during collisions.
Future Promises Are Today’s Dreams
Temple goes on to profile the efforts of QuantumScape, a company claiming to have developed technologies that solve some of the problems with lithium batteries for electric vehicles, potentially putting them on par with internal combustion engines.
Making electric cars more competitive with gas-powered ones will require a breakthrough battery that remedies those shortcomings. That, at least, is the argument of Jagdeep Singh, chief executive of QuantumScape, a Silicon Valley startup that claims to have developed just such a technology.
The company asserts it did so by solving a chemistry puzzle that has stumped researchers for nearly half a century: how to use lithium, the lightest metal on the periodic table, to boost the amount of energy that can be packed into a battery without posing a routine risk of fire or otherwise sacrificing performance. The company says it achieved this, in large part, by developing a solid version of the flammable liquid electrolyte.
VW was impressed enough to invest hundreds of millions of dollars in QuantumScape. The German auto giant also agreed to set up a joint venture with the company to mass-produce the batteries and says they’ll be in its electric cars and trucks on the road by 2025.
Just One More Pretender?
QuantumScape isn’t the first company to claim revolutionary breakthroughs in battery technology, only to then fail. Temple discusses past failures with Oak Ridge National Laboratory battery researcher Nancy Dudney.
“QuantumScape has set me back on my heels,” says Nancy Dudney, a battery researcher at Oak Ridge National Laboratory, who has done pioneering work on solid-state electrolytes. “At first view, it looks really good,” she says, though she adds, “We’ve been here before with other battery advances.”
Indeed, the battery field is littered with examples of startups that promised breakthrough technologies but ultimately failed. And the challenges ahead of QuantumScape are daunting, particularly when it comes to converting its prototype cells into commercial products that can be manufactured cheaply.
Only Partway There
Despite its promises, QuantumScape is only “partway there” says Paul Albertus, a battery expert at the University of Maryland. There is still much work to be done.
All of QuantumScape’s published tests so far were performed on single-layer cells. (After this piece went to press, the company announced they’ve produced and conducted tests on 4-layer cells that achieved similar results.) To work in cars, the company will need to produce batteries packed with several dozen layers, effectively moving from a single playing card to a deck. And it will still have to find a way to manufacture these cells cheaply enough to compete with lithium-ion, a battery technology that’s dominated for decades.
It’s a daunting engineering task. “They’re partway there—after 10 years and $300 million and 150 people working on this, they have this little playing card now,” says Albertus, from the University of Maryland. “That’s a long way away still from delivering batteries on the thousands-of-metric-tons scale—and it’s a really hard challenge.” Several battery researchers told me they seriously doubt that QuantumScape can scale up and complete full safety tests in time to put batteries in cars on the road just four years from now.
Given the company’s results and the encouraging announcements from other startups, most people in the battery world do think it’s looking more likely that the problems that have held up lithium-metal for decades can be solved—which is why it’s on MIT Technology Review’s list of breakthrough technologies this year. But it’s also clear that for all the progress that’s been made since Whittingham’s time at Exxon, years of work still lie ahead.
If you’re willing to fight for Main Street America, click here to sign up for the Richardcyoung.com free weekly email.